Water is the main condition for the existence of life on Earth

Properties

Freezing and boiling temperatures, which are far apart
Maximum density at 4 deg C , therefore, ice floats
Permits layering in ponds
High specific heat, higher than any liquid except ammonia - 5 times of solids
Serves as a ballast to prevent fast temperature changes
High heat of vaporization, among the highest.
Serves as an excellent heat sink
The best solvent

WATER

TABLE 4.1 STOCKS OF WATER ON EARTH

Location	Amount $\left(10^{15} \mathrm{~m}^{3}\right)$	Percentage of world supply
Oceans	1350	97.2
Icecaps and glaciers	29	2.09
Groundwater within 1 km	4.2	0.30
Groundwater below 1 km	4.2	0.30
Freshwater lakes	0.125	0.009
Saline lakes and inland seas	0.104	0.007
Soil water	0.067	0.005
Atmosphere	0.013	0.0009
Water in livirg biomass	0.003	0.0002
Average in stream channels	0.001	0.00007

Source: Harte (1985).

The salinity of a water source is measured in terms of the "total dissolved solids" (TDS) content, which is commonly reported in milligrams per liter (mgl/). Based on its salinity, water sources may be classified as follows:

Fresh water less than $1,000 \mathrm{mg} / \mathrm{TDS}$
Slightly saline $\quad 1,000$ to $3,000 \mathrm{mg} / \mathrm{TDS}$
Moderately saline $\quad 3,000$ to $10,000 \mathrm{mg} / \mathrm{TDS}$
Highly saline \quad Verer $10,000 \mathrm{mg} / \mathrm{TDS}$

Brackish water normally refers to water with salinities between 1,000 to $10,000 \mathrm{mg}$ ll. Seawater salinity is on the order of $35,000 \mathrm{mg} / \mathrm{TDS}$.

In terms of salinity alone, the U.S. Environmental Protection Agency established a TDS guideline of $500 \mathrm{mg} / \mathrm{for}$ drinking water. Water desalination technologies are the means to reduce the TDS concentration to drinking water standards. Commonly, in brackish

The WHO standards for drinking water are [1]:

Substance	Desired maximum concentration in mg1	Pemitted maximum concentration in mgl	Isotoric sohtion in mg1 [2]
total dissolved solids	500	1500	9000
Mg	30	150	-
Ca	75	200	-
Chloride	20	60	$3550-3800$
Suffate	200	400	-
Sodum	-	-	$3050-3400$
Potassium	-	-	$150-210$
total content in mmoll	approx. 10	approx. 30	approx. 150

PRINCIPA CONSTITUENIS OF SEAWATER	
Chemical	Conten: (parts per
Constituent	thousand)
Calcium (Ca)	0.419
Magnesium (Mg)	1.304
Sodium (Na)	10.710
Polassium (K)	0.390
Bicarbonate (HCO,)	0.146
Sultate (SO_{4})	2690
Chloride (CI)	19.350
Bromide (Br)	0.070
Total dissolved solids (salinity)	35.079

COMPARISON BETWEEN OCEAN WATER AND RIVER WATER

Chemical	Percentage of Total Salt	
	Contont	
Constituent	Ocean W	River Water
Slica (SiO_{2})	-	14.51
Iron ($\mathrm{F}_{\text {e }}$)	-	074
Calcium (Ca)	1.19	16.62
Magnesium (Mg)	372	4.54
Sodium (Na)	30.53	6.98
Potassium (K)	1.11	255
Bicarbonate (HCO_{3})	0.42	31.90
Sullate (SO_{4})	7.67	12.41
Choride (C)	55.16	8.64
Nitrate (NO,)	-	1.11
Bromide (8r)	020	-
TOTAL	100.00	100.00

א. שטפים בהידרוספירה

Water is not distributed evenly

WATERWORLD Areas of physical and economic water scarcity.

NOTE: When more than 75% of a region's river flows are withdrawn for agriculture, industry, and domestic purposes, it suffers from physical water scarcity. Economic water scarcity is when human, institutional, and financial capital limit access to water, even where water is available locally. SOURCE: Comprehensive Assessment of Water Management in Agriculture, 2007

Fresh Water Is Drying Up

Colors map the ratio of how much fresh water people

PROIECTED CHANEES IM AGRICJITURE IN 2080 DUE TO CLIMATE CHANEE

Water Availability: 2025

תרףשים 6 - הפקת מים שפירום לנפש בשנה במדצנות OECD (2010 או שנה אחרונה ידועה, במ"ק)

General uses

Irrigation
Urban use
Power stations
Industry

Water use by source

Water use by category

Sources

Ground water
Rivers and lakes
Sea water
Saline water
Recovered waste water

$\underline{\text { Water for industry }}$

Industries:

Steel
Petroleum
Paper
Power stations
Chemical

Water for industry

Uses:

Cooling
Steam
Solvent
Raw material
Transport of solids
Dilution

Water treatment

Filtration
Chemicals for preventing of corrosion and growth of plants,.
Chemicals for settling of dispersed solid particles.
Softening
High purification
A. Initial settling of salts Treatment with lime:
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right) 2+\mathrm{Ca}(\mathrm{OH})_{2}=2 \mathrm{CaCO}_{3}+$ $2 \mathrm{H}_{2} \mathrm{O}$
Treatment with lime and soda:
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
$\mathrm{MgCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{MgCO}_{3}+2 \mathrm{NaCl}$
$\mathrm{MgCO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{Mg}(\mathrm{OH})_{2}+$ CaCO3
Ion exchange.

Waste water

Problems

1.Organic waste.
2. The saturation concentration of oxygen in the waste water is $8-15 \mathrm{mg} /$ liter, depending on salts concentration and temperature. The concentration required to maintain live fish is 5$8 \mathrm{mg} /$ liter for very active fish like trout, down to 3 $\mathrm{mg} /$ liter for less active fish like carp.

The level of organic waste is measured by B.O.D. (BIOCHEMICAL OXYGEN DEMAND) in a varity of units:
lb oxygen per cu m or cu ft
lb oxygen per 100 lb water at 20 C for 5 days
lb BOD per population units
The specification of BOD depends on its use:
Drinking water, irrigation, swimming or fish farming.
Another standard is COD (Chemical oxygen demand) The amount of oxygen required for chemical oxidation of the waste.

תנ0נין		תינין אולטרפּללטרציה ה	יחידת	าขถาง
שלב שֶ	שלבראשן\|			
, 5.4 ± 0.7	5.9 ± 0.4	7.6 ± 0.3	-	pH
76.2 ± 19.8	29.3 ± 9.7	1534.2 ± 307.3	$\mu \mathrm{S} / \mathrm{cm}$	מוליכות חשמלית
17.5	8.3 ± 1.2	328.6 ± 6.7	mg/L	נלורידים
16.7 ± 5.6	3.0 ± 1.7	210.7 ± 16.2		נתרן
0.1 ± 0.1	0.1 ± 0.2	83.3 ± 10.0		Oידן
0.1 ± 0.1	0.0 ± 0.2	29.5さ5.2		מגנזיום
5.4 ± 5.3	0.8 ± 0.5	12.8 ± 5.4		פחמן אורגני כללי
0.3 ± 0.1	0.3 ± 0.5	6.3 ± 7.4		חנקן כללי
24.1 ± 9.2	7.9 ± 3.0	254.9 ± 23.0	$\mathrm{mg} / \mathrm{LCaCO} 3$	אלקליניות

טבלה 1. איכויות (ממוצעะטטיות תקן) של התסנינים השונים בפיילוט ההתפלה הטכיוני במט״ש ניר עציון לאורך תקופת העבודה

