

Water is the main condition for the existence of life on Earth

Properties

Freezing and boiling temperatures, which are far apart Maximum density at 4 deg C, therefore, ice floats Permits layering in ponds High specific heat, higher than any liquid except ammonia - 5 times of solids Serves as a ballast to prevent fast temperature changes High heat of vaporization, among the highest. Serves as an excellent heat sink The best solvent

TABLE 4.1 STOCKS OF	WATER ON	EARTH
---------------------	----------	-------

Location	Amount (10 ¹⁵ m ³)	Percentage o world supply	
Oceans	1350	97.2	
Icecaps and glaciers	29	2.09	
Groundwater within 1 km	4.2	0.30	
Groundwater below 1 km	4.2	0.30	
Freshwater lakes	0.125	0.009	
Saline lakes and inland seas	0.104	0.007	
Soil water	0.067	0.005	
Atmosphere	0.013	0.0009	
Water in livirg biomass	0.003	0.0002	
Average in stream channels	0.001	0.00007	

.

.

..

. . .

302

Source: Harte (1985).

4

.

The salinity of a water source is measured in terms of the "total dissolved solids" (TDS) content, which is commonly reported in milligrams per liter (mg/l). Based on its salinity, water sources may be classified as follows:

Fresh water	less than 1,000 mg/l TDS
Slightly saline	1,000 to 3,000 mg/l TDS
Moderately saline	3,000 to 10,000 mg/l TDS
Highly saline	Over 10,000 mg/l TDS

Brackish water normally refers to water with salinities between 1,000 to 10,000 mg/l. Seawater salinity is on the order of 35,000 mg/l TDS.

In terms of salinity alone, the U.S. Environmental Protection Agency established a TDS guideline of 500mg/l for drinking water. Water desalination technologies are the means to reduce the TDS concentration to drinking water standards. Commonly, in brackish

The WHO standards for drinking water are [1]:

Substance	Desired maximum concentration in mg/l	Permitted maximum concentration in mg/l	Isotonic solution in mg/l ,[2]
total dissolved solids	500	1500	9000
Mg	30	150	÷
Ca	75	VG 200	ŭ
Chloride	20	60	3550-3800
Sulfate	200	400	Ξ.
Sodium	÷	-	3050-3400
Potassium	2	2	150-210
total content in mmol/l	approx. 10	approx. 30	approx. 150

PRINCIPAL CONSTITUENTS OF SEAWATER

COMPARISON BETWEEN OCEAN WATER AND RIVER WATER

manipus of Tatal Cali

	Content
Chemical	(parts per
Constituent	thousand)
Calcium (Ca)	0.419
Magnesium (Mg)	1.304
Sodium (Na)	10.710
Potassium (K)	0.390
Bicarbonate (HCO ₃)	0.146
Sulfate (SO ₄)	2.690
Chloride (CI)	19.350
Bromide (Br)	0.070
Total dissolved solids	
(salinity)	35.079

	Percentage	of Total Salt
Chemical	Content	
Constituent	Ocean Water	River Water
Silica (SiO ₂)		14.51
Iron (Fe)	-	0.74
Calcium (Ca)	1.19	16.62
Magnesium (Mg)	3.72	4.54
Sodium (Na)	30.53	6.98
Potassium (K)	1.11	2.55
Bicarbonate (HCO ₃)	0.42	31.90
Sulfate (SO,)	7.67	12.41
Chloride (CI)	55.16	8.64
Nitrate (NO ₃)	hanne	1.11
Bromide (Br)	0.20	
TOTAL	100.00	100.00

א. שטפים בהידרוספירה

Water is not distributed evenly

NOTE: When more than 75% of a region's river flows are withdrawn for agriculture, industry, and domestic purposes, it suffers from physical water scarcity. Economic water scarcity is when human, institutional, and financial capital limit access to water, even where water is available locally. **SOURCE:** Comprehensive Assessment of Water Management in Agriculture, 2007

PROJECTED CHANGES IN AGRICULTURE IN 2080 DUE TO CLIMATE CHANGE

Water Availability: 2025

⁵⁹ תרשים 6 – הפקת מים שפירים לנפש בשנה במדינות OECD (2010 או שנה אחרונה ידועה, במ״ק)

* In 2010 Israel's activities to alleviate the water shortage include reuse of 80% of its wastewater, whereas the Palestinians' activities remain 0.

General uses

Irrigation Urban use Power stations Industry

Water use by source

Wastewater reuse 9% Surface Groundwater water and wells springs 56% 35%

Water use by category

Ground water Rivers and lakes Sea water Saline water Recovered waste water **Water for industry**

Industries: Steel Petroleum Paper Power stations Chemical

Water for industry

Uses: Cooling Steam Solvent Raw material Transport of solids Dilution

Filtration

Chemicals for preventing of corrosion and growth of plants,. Chemicals for settling of dispersed solid particles. Softening High purification

A. Initial settling of salts Treatment with lime: $Ca(HCO_3)_2 + Ca(OH)_2 = 2 CaCO_3 +$ $2H_2O$ Treatment with lime and soda: $CaCl_2 + Na_2CO_3 = CaCO_3 + 2 NaCl$ $MgCl_2 + Na_2CO_3 = MgCO_3 + 2 NaCl$ $MgCO_3 + Ca(OH)_2 = Mg(OH)_2 +$ CaCO₃ Ion exchange.

Problems

1.Organic waste.

2. The saturation concentration of oxygen in the waste water is 8-15 mg/liter, depending on salts concentration and temperature.
The concentration required to maintain live fish is 5-8 mg/liter for very active fish like trout, down to 3 mg/liter for less active fish like carp.

The level of organic waste is measured by B.O.D. (BIOCHEMICAL OXYGEN DEMAND) in a varity of units:

lb oxygen per cu m or cu ft

lb oxygen per 100 lb water at 20C for 5 days lb BOD per population units

The specification of BOD depends on its use: Drinking water, irrigation, swimming or fish farming.

Another standard is COD (Chemical oxygen demand) The amount of oxygen required for chemical oxidation of the waste.

השבה ושיסוש בקולחים

2011

פרמטר	יחידות	תסנין	תסנין אוסמוזה הפוכה	
		אולטרפילטרציה	שלב ראשון	שלב שני
рН		7.6 ±0.3	5.9±0.4	5.4±0.7
מוליכות חשמלית	μS/cm	1534.2±307.3	29.3±9.7	76.2±19.8
כלורידים	mg/L	328.6±6.7	8.3±1.2	17.5
נתרן		210.7±16.2	3.0±1.7	16.7±5.6
סידן		83.3±10.0	0.1±0.2	0.1±0.1
מגנזיום		29.5±5.2	0.0±0.2	0.1±0.1
פחמן אורגני כללי		12.8±5.4	0.8±0.5	5.4±5.3
חנקן כללי		6.3±7.4	0.3±0.5	0.3±0.1
אלקליניות	mg/L CaCO3	254.9±23.0	7.9±3.0	24.1±9.2

טבלה 1. איכויות (ממוצע±סטיות תקן) של התסנינים השונים בפיילוט ההתפלה הטכניוני במט״ש ניר עציון לאורך תקופת העבודה